Pan-genomic indexes for robust classification of nanopore and metagenomic reads

Omar Ahmed¹, Massimiliano Rossi², Sam Kovaka¹, Michael C. Schatz¹, Travis Gagie³, Christina Boucher², and Ben Langmead¹

Genome Informatics November 3-5, 2021

¹ Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA ² Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA ³ Faculty of Computer Science, Dalhousie University, Halifax, NS, CAN

Herbert Wertheim College of Engineering

Department of Computer & Information Science & Engineering

UNIVERSITY of FLORIDA

Overview of Presentation

Nanopore Sequencing

Allows users to perform targeted sequencing using software

Motivation: A need for faster methods to classify reads against large, repetitive databases

Video From: https://nanoporetech.com/about-us/news/towards-real-time-targeting-enrichment-or-other-sampling-nanopore-sequencing-devices

UNCALLED & Readfish allow users to target sequences but not optimized for large, and repetitive databases

Method Overview

- SPUMONI Streaming PseUdo MONI¹
 - Makes rapid targeting decisions based on input database O Key Intuition: A read's MS/PMLs with respect to a reference can reveal if there appears to be "good" approximate match to reference
 - Uses the r-index² to enable efficient indexing of large, repetitive collections
 - O Number of runs in BWT, r, typically grows sub-linearly w.r.t to length of input sequence, n.
 - Extends MONI¹ in two key areas
 - O Adds a "null distribution" and hypothesis testing framework for finding "significant" matches O Replaces MONI's "batch" matching statistic (MS) algorithm with a faster, streaming algorithm Calculates new quantity called pseudo-matching lengths (PMLs)

¹Rossi, M., Oliva, M., Langmead, B., Gagie, T., & Boucher, C. (2021). MONI: A pangenomics index for finding MEMs. *Proc. RECOMB*. ²Mun, T., Kuhnle, A., Boucher, C., Gagie, T., Langmead, B., and Manzini, G. (2020). Matching reads to many genomes with the r-index. J. Comput. Biol. 27, 514–518

Check Max Rossi's Poster 150

Matching Statistics

longest prefix of the pattern *P[i..m]* that occurs in text *T* O Let T be a text of length n, and P be a pattern of length m

Think of matching statistics like they are half MEMs (Maximally Exact Matches)

Example: \mathbf{O}

Positions:		0	1	2	3
Т	=	а	С	g	g
Р	=	t	а	C	g
М	—	3	4	3	2

- The matching statistics of P w.r.t to T is an array M of length m where M[i] is the length of the

SPUMONI Approach

Image: https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Distribution of MS/PML

Statistical Tests:

KS-Test

Results - Real Mock Community Experiment

O Using real mock community reads¹ where we want to "target" the yeast reads, and eject all the microbial species

Reference:	One ger (7 genomes fr	ome ref om 7 species)	Pan-genome ref (3537 genomes from 7 species)		
Approach:	SPUMONI	minimap2	SPUMONI	minimap2	
Accuracy:	86.72	87.82	96.02	97.52	

Answer: (1) Yes, using a pan-genome reference, allowed us to target the ZymoMC strains (2) Faster and uses less memory than minimap2 with similar classification metrics

¹Kovaka, S., Fan, Y., Ni, B. et al. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat Biotechnol **39**, 431–441 (2021).

• Question: Can using a pan-genome reference allow us to target a particular strain that is not present in the reference? and how does it compare on time and memory?

► SPUMONI is

O 12X faster than minimap2 O Uses 4X less memory than minimap2

Pillars of SPUMONI

For details on additional specifics of method and results:

Ahmed, O., Rossi, M., Kovaka, S., Schatz, M. C., Gagie, T., Boucher, C., & Langmead, B. (2021). Pan-genomic Matching Statistics for Targeted Nanopore Sequencing. iScience, 102696.

¹ Mun, T., Kuhnle, A., Boucher, C., Gagie, T., Langmead, B., and Manzini, G. (2020). Matching reads to many genomes with the r-index. J. Comput. Biol. 27, 514–518

Why?			
Non-alignment method			
Use of r-index ¹			
Non-parametric, Non-kmer method			

Motivated us to **push SPUMONI into other domains** like metagenomic classification!

Overview of Presentation

Speeding Up SPUMONI

How can we speed up SPUMONI?

How did we use the minimizer concept?

Small Window Size (k)

ACTAGATAGACCAATCAGGTAATACGCGTAGGCTACTAGGATA Reference

Large Window Size (w)

Minimizers AGAT GTAG ATCA GTAA

¹ Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., & Yorke, J. A. (2004). Reducing storage requirements for biological sequence comparison. *Bioinformatics*, 20(18), 3363-3369.

Key Idea: Extract and concatenate the minimizers¹ to generate a smaller reference.

Combining the minimizer scheme with alphabet promotion leads to even smaller references.

¹ Ekim, B., Berger, B., & Chikhi, R. (2021). Minimizer-space de Bruijn graphs: Whole-genome assembly of long reads in minutes on a personal computer. *Cell Systems*.

- Apply minimizer scheme (k = 4, w = 12)

GTAG TAGG

Encode each minimizer into a 8-bit character

0xe5 0x71

Concatenate the minimizer characters

Impact of the Alphabet Promotion

```
seq.length = 5 * 4
for i = 1 to i = seq.length {
   // Compute MS at position i
}
```

```
seq.length = 5
for i = 1 to i = seq.length {
    // Each iteration covers 4
    // characters
```


Results - Using Minimizer-Based References

k = 4 to the reference?

Answer: Built an index over 1833 E. coli genomes¹ (~9 GB) to see ...

¹O'Leary NA et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016.

Question: How much smaller will the index be when applying this minimizer scheme where

Results - Using Minimizer-Based References

Question: How will this reduction in reference size affect our binary classification ability?

• Answer: Simulated Human¹ and E. coli reads², and used our E. coli index to binary classify the reads ...

¹Nurk S, Koren S, Rhie A, Rautiainen M, et al. **The complete sequence of a human genome.** bioRxiv, 2021. ² O'Leary NA, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016.

Results - Indexing 12 Human Assemblies

Question: Can we index larger databases more efficiently than previously?

- **O** For reference previously, SPUMONI could **index 3 human genomes in 18 GB**
- **O** SPUMONI was **~2x faster than minimap2** at classifying ONT reads using the 3 human genome index.

Answer: Built an index over 12 human assemblies, and compared to our previous throughput ...

Results - Extending to Multiple Classes

Question: Can we use matching statistics to distinguish multiple classes?

- O In this experiment, we simulated E. coli², Salmonella², and Human Reads¹
- **O** Built three separate indexes ...
 - ▶ 3 human genomes (~9 GB)
 - 1833 E. coli genomes (~9 GB)
 - ▶ 988 Salmonella genomes (~4.6 GB)

O Used a simple test of largest mean to classify read however ...

Answer: Yes, we can. Here are the confusion matrices for classifying short and long reads ...

Classifying S	hort Reads
---------------	------------

		Predicted Class			
		E. coli	Human	Salmonella	
True Class	E. coli	24,588	39	373	
	Human	14	24,981	5	
	Salmonella	484	0	24,516	

¹Nurk S, Koren S, Rhie A, Rautiainen M, et al. **The complete sequence of a human genome.** bioRxiv, 2021. ²O'Leary NA, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016.

Relatively similar sized so we can just test it with simple classification rule.

Classifying Long Reads

		Predicted Class			
		E. coli	Human	Salmonella	
True Class	E. coli	24,459	46	495	
	Human	30	24,946	24	
	Salmonella	272	17	24,711	

Key Takeaways

SPUMONI is a rapid tool for binary read classification that uses a read's MS or PMLs to classify it.

large databases more efficiently.

In a host-depletion scenario, where SPUMONI indexed human genomes ...

matching statistics to account for database growth and variable-sized classes.

O Use of the **minimizers** and a **promoted alphabet** allows SPUMONI to index

- O Previously, SPUMONI was ~2X faster at classifying than minimap2 (3 human genomes). O Using the new indexing approach and **4x as many human genomes**, SPUMONI can classify reads 6-15X faster than previously with only 3 human genomes.
- We envision in the future we can classify metagenomic reads robustly using distributions of
 - ull" distribution allows the **notion of significance to be a function of database** sequences, and the error rate of the query read.

Thank you!

- Contact: oahmed6@jhu.edu
- Twitter: **@oyfahmed**
- GitHub: https://github.com/oma219/spumoni
- Acknowledgements:
 - Special thanks to Massimiliano Rossi, Daniel N. Baker, & Ben Langmead for assistance on project. Thanks to Sam Kovaka, Michael C. Schatz, Travis Gagie, Christina Boucher for help &
 - assistance on the project
 - Thanks to Nae-Chyun Chen, Taher Mun, Kathleen Newcomer, Anna Liebhoff, Dominik Kempa, Mao-Jan Lin and Kavya Vaddadi

Funding:

